侵权投诉

PCB布局设计电路中的耦合电容解析

电子设计 ? 2021-01-12 13:53 ? 次阅读

无论是为新IC设计电路,还是为具有分立组件的PCB布局设计电路,设计中的导体组之间都将存在耦合电容。您永远无法真正消除直流电阻,铜粗糙度,互感和互电容等寄生现象。但是,通过正确的设计选择,您可以将这些影响减小到不会引起过多串扰或信号失真的程度。

耦合电感很容易发现,因为它以两种主要方式出现:

两个不垂直延伸且参考接地平面的网络可能具有彼此面对的环路(互感)。

提供返回电流路径的每个平面在其参考网络中将具有一些耦合电感(自感)。

由于耦合电容无处不在,因此很难确定。每当将导体放置在PCB或IC布局中时,它们都会具有一定的电容。这两个导体之间的电势差使它们像典型的电容器一样进行充电和放电。这会导致位移电流从负载分量转移出去,并导致信号在高频下在网之间交叉(即串扰)。

使用正确的电路模拟器工具集,您可以对LTI电路中的耦合电容如何影响时域和频域中的信号行为进行建模。一旦设计好布局,就可以从阻抗和传播延迟测量中提取耦合电容。通过比较结果,可以确定是否需要更改布局,以防止网络之间发生不必要的信号耦合。

电路图未明确考虑电路中导体之间的任何耦合电容。这是因为耦合电容取决于以下方面:

几何。导体之间的距离,其横截面积以及布局中彼此面对的区域的大小将决定电路的电容。

介电常数。分隔导体的电介质具有较高的介电常数,并且耦合电容与介电常数成正比。

寄生之间的耦合。单个导体可以具有多个网络的耦合电容。这些电容与其他寄生电容和电感结合在一起以产生复杂的耦合,这可能是频率的复杂函数。

由于耦合可能是频率的复杂函数,因此返回路径和串扰信号可能会产生结果,其频率也与源信号不同。这是由于设计电路,耦合电容和任何其他寄生效应(直流电阻和寄生电感)形成的等效网络的传递函数。

要检查寄生效应如何影响您的电路板,需要使用布局前和布局后仿真工具。布局前模拟要灵活得多,但是由于尚未创建布局,因此它们不能考虑布局中的几何形状。相比之下,正确的数字化布局后仿真工具集将几乎精确地说明寄生现象,但要查明布局中能产生最强耦合的确切部分却很困难。此外,如果不更改布局,就无法浏览不同的耦合电容或电感值来找到可接受的寄生耦合电平。

耦合电容建模工具

因为直到布局完成,布局中的耦合电容才是未知的,因此开始对耦合电容进行建模的位置在原理图中。这可以通过在关键位置添加一个电容器来建模组件中特定的耦合效应来完成。这允许根据电容器的放置位置对耦合电容进行现象学建模:

输入/输出电容。实际电路(IC)中的输入和输出引脚会由于引脚和接地层之间的隔离而具有一定的电容。对于小型SMD组件,这些电容值通常约为10pF。这是在布局前仿真中要检查的主要点之一。

网之间的电容。在两个承载输入信号的网络之间放置一个电容器将对网络之间的串扰建模。通过可视化受害者和攻击者网络,您可以看到打开攻击者的方式如何在受害者上引发信号。由于这些电容非常小,并且串扰还取决于互感,因此通常仅在布局后执行串扰仿真才能获得最高的精度。

将电容走线回到接地层。即使走线很短,它相对于接地层仍将具有寄生电容,这会导致短传输线上的谐振。

示例:BJT输入引脚处的耦合电容

例如,让我们看一下使用PSpice中的瞬态分析的BJT晶体管的输入引脚与其参考平面之间的耦合。下图显示了一个示例电路,其中包括对短传输线上的寄生进行建模的电路。短线上的电感器和电容器(分别为L1和C1)以及电阻器模拟输出端带有一定电阻的短传输线行为。该系统中的源是范围为0至5V的脉冲源,其上升/下降时间为2ns,重复频率为100ns(10MHz)。晶体管Q1是40237NPN晶体管。

放置电容器C2以模拟Q1输入端的pi电容。一个更准确的模型将包括连接到基极的引脚封装电感,但目前我们将重点放在将电容耦合回接地平面上。

pIYBAF_9OQyAUH_7AAB8G1ljWvk117.png

耦合电容仿真示意图

为了检查输入耦合电容如何影响信号行为并可能导致失真,将电容器的值定义为全局参数CAP2。这是通过打开组件属性对话框并将组件值设置为{CAP2}来定义的。需要使用PSpice中“放置零件”菜单中的“PARAMS”零件将全局参数放置在原理图上。在下图中,我为C2定义了从10到110pF的参数扫描范围(增量为20pF)。总共给出6条曲线,每个C2值一条。

o4YBAF_9ORiASkINAACCMuFYJak212.png

在PSpice中定义参数扫描范围

现在已经定义了耦合电容范围,是时候运行仿真并检查耦合电容如何影响信号行为了。

时域和频域结果

下图显示了10MHz脉冲流中第一个脉冲的发射极电压的放大图。由于这条短传输线上的共振,我们可以看到明显的振铃。当耦合电容较?。躺?,C2=10pF)时,振铃最大,但随着耦合电容增加(紫色曲线,C2=110pF),振铃变小。

o4YBAF_9OSWAPreaAACOs8NFCZU900.png

参数扫描产生时域

耦合电容的作用是将信号带宽中的高频分量作为位移电流分流到地平面。这可以在频域结果中很好地看到,该结果是通过傅立叶变换计算的。

pIYBAF_9OTCASBX4AACnH4qiknM885.png

参数扫描产生频域

在信号带宽的高频端(?120MHz或更高),当耦合电容较大时,这些频率的峰值电平会降低。实际上,Q1和C2就像具有高截止频率的低通滤波器一样。请注意,这些信号的拐点频率约为175MHz,约占总信号功率的75%。我们可以看到,耦合电容开始引起低于该频率的滤波,从而导致信号失真。

添加源阻抗匹配

尽管随着耦合电容的增加,振铃会略有减少,但新型IC往往具有较小的功能,从而具有较小的耦合电容。在这种情况下,这是有问题的,因为瞬态响应导致振幅更大的无阻尼振荡。这凸显了该电路设计中源极终端的需求。如果我们将源的输出阻抗匹配到?50Ohms,则可以预期瞬态响应具有较低的幅度,并且可能会出现临界阻尼或过阻尼的振荡。

下图显示了一个50欧姆电阻与脉冲电压源(V1)串联以提供源端接的瞬态分析结果。这显着抑制了上升沿的振荡,并使瞬态响应受到严重抑制。在下降沿,仍然存在一些下冲。

o4YBAF_9OUGAeBYIAACRI-BMCLM867.png

参数扫描导致时域带有源终止

根据传输线的电路原理,将产生临界阻尼的源端接电阻是(线路+负载电路)网络的输入阻抗的两倍。端接所需的确切电阻将取决于耦合电容的值。从设计的角度来看,您应该尝试在布局中找到一个可以容纳一定范围内耦合电容值的源电阻,以帮助抑制由于该电路中的瞬态响应而引起的过冲/下冲。

此设计中耦合电容可能突出的其他地方包括:

脉冲驱动器的输出(接地)。

晶体管的输出(接地)。

在晶体管输出和电源引脚之间。

上面的前两点结合起来可以增加互连的电容,从而稍微降低其阻抗。根据电路理论,这与增加晶体管的输入电容时一样,使瞬态响应更接近临界阻尼或更深,成为过度阻尼。在长传输线上,需要将负载阻抗与线路阻抗分开考虑,并且我们需要查看电路反射以确定耦合电容引起的信号行为。
编辑:hfy

收藏 人收藏
分享:

评论

相关推荐

一个无线电??亟涣骺氐慕樯芎陀τ盟得?/a>

本装置可通过无线电??胤绞?,在有效距离(≤15米)内实现任意方向及超越屏障对交流220V各种家用电器....
发表于 01-14 17:17 ? 7次 阅读
一个无线电??亟涣骺氐慕樯芎陀τ盟得? />    </a>
</div><div class=

关键材料国产化,万元彩电跌落神坛

据统计,上世纪七十年代初期,国内仅有天津、北京等地几个厂家试制出为数不多的彩电整机;1978年,我国....
的头像 新材料在线 发表于 01-14 11:08 ? 137次 阅读
关键材料国产化,万元彩电跌落神坛

被动元件行业景气度升温,国产替代迎加速

被动元件产业涨价第一枪鸣起,全球晶片电阻上游材料氧化铝陶瓷基板龙头三环集团领头涨价,涨幅15%起跳,....
的头像 我快闭嘴 发表于 01-13 15:42 ? 246次 阅读
被动元件行业景气度升温,国产替代迎加速

铝聚合物电解电容器的电气性能及技术优势研究

  由于铝聚合物电解电容器的ESR极小,用于输出整流滤波时,由于负载短路或其它原因,会出现瞬间的高幅....
的头像 电子设计 发表于 01-13 10:15 ? 196次 阅读
铝聚合物电解电容器的电气性能及技术优势研究

2020中国IC设计产业销售额预计为3819.4亿同比增长23.8%

面对新冠肺炎疫情等不利因素,2020年中国作为全球集成电路(IC)设计产业发展最具活力地区之一,依然....
发表于 01-13 09:34 ? 246次 阅读
2020中国IC设计产业销售额预计为3819.4亿同比增长23.8%

SYN531R超高频ASK接收机集成电路的数据手册免费下载

SYN531R是一款超高频ASK接收机集成电路,采用小型SOP-8封装,工作频率为300MHz至45....
发表于 01-13 08:00 ? 25次 阅读
SYN531R超高频ASK接收机集成电路的数据手册免费下载

力芯微电子、华润华晶、华润微等5家IC设计企业获评首批江苏省服务贸易重点企业

近日,江苏省商务厅下发通知(苏商服[2020]416号),正式确认无锡国家高新技术产业开发区等14家....
的头像 集成电路园地 发表于 01-12 18:39 ? 543次 阅读
力芯微电子、华润华晶、华润微等5家IC设计企业获评首批江苏省服务贸易重点企业

电容的工作过程

  电路和电容器   首先讲一下电路和电容器。   电路是道路,电荷是车。   如果将一个电路比作马路的话,电荷的移动就...
发表于 01-11 15:25 ? 0次 阅读
电容的工作过程

超级电容器在电力分合闸中的应用解析

随着电力事业的飞速发展和城乡电网建设水平不断提高,交流高压真空断路器产品发展特别迅速,产品的更新换代步伐进一步加快,而且...
发表于 01-09 11:23 ? 44次 阅读
超级电容器在电力分合闸中的应用解析

电容的一些经典问题详细说明

电容器(capacitor)在音响组件中被广泛运用,滤波、反交连、高频补偿、直流回授…随处可见。但若....
的头像 Wildesbeast 发表于 01-09 11:12 ? 763次 阅读
电容的一些经典问题详细说明

印制电路板(PCB)布线在高速电路中具有关键的作用

对于次大电容值的电容器应该重复这个过程。最好从0.01 μF最小电容值开始放置,并且靠近放置一个2.....
的头像 电子发烧友网工程师 发表于 01-08 17:41 ? 261次 阅读
印制电路板(PCB)布线在高速电路中具有关键的作用

RF电路布局要想降低寄生信号记住以下这八条规则

更远的距离会产生电流环路,形成电感器。如果这种不必要的电流路径偏移,碰巧又同另一条线路交叉,那么干扰....
的头像 电子发烧友网工程师 发表于 01-08 17:15 ? 177次 阅读
RF电路布局要想降低寄生信号记住以下这八条规则

5G领域的日本企业村田制作所,占据全球40%的市场

早在2020年12月,村田制作所总裁中岛规巨便表示,该公司用于智能手机的尖端电容器缺货情况十分严重。....
的头像 我快闭嘴 发表于 01-08 13:24 ? 455次 阅读
5G领域的日本企业村田制作所,占据全球40%的市场

逻辑电平中逻辑互连的AC耦合电容

一般AC耦合电容的位置和容值大小都是由信号的协议或者芯片供应商去提供,对于不同信号和不同芯片,其位置....
发表于 01-07 16:30 ? 57次 阅读
逻辑电平中逻辑互连的AC耦合电容

磁性的本质

磁铁可以以磁性矿石的形式在自然状态下找到,其中两种主要类型是磁铁矿,也称为“氧化铁”(FE 3 O ....
的头像 multisim 发表于 01-07 15:12 ? 169次 阅读
磁性的本质

2021年的5G手机需求量将突破5亿部

据媒体报道,全球最大积层陶瓷电容器(MLCC)制造商日本村田预估,新年度的5G手机需求量将突破5亿部....
的头像 我快闭嘴 发表于 01-06 14:50 ? 341次 阅读
2021年的5G手机需求量将突破5亿部

电极材料现状!借助3D打印技术制备石墨泡沫

其中碳基材料,如石墨烯和碳纳米管(CNTs)是柔性透明导电电极(FTCEs)最常用的电极材料之一,有....
的头像 DeepTech深科技 发表于 01-06 14:12 ? 264次 阅读
电极材料现状!借助3D打印技术制备石墨泡沫

为什么铝电解质电容不能承受反向电压?

由于电解电容器存在极性,在使用时必须注意正负极的正确接法,否则不仅电容器发挥不了作用,而且漏电流很大....
的头像 张飞实战电子 发表于 01-06 11:16 ? 259次 阅读
为什么铝电解质电容不能承受反向电压?

可调电容器的构成以及主要参数的介绍

可调电容器的构成 可调电容器是由两片或者两组小型金属弹片中间夹着介质制成的,调节的时候,改变两片之间....
发表于 01-06 10:48 ? 103次 阅读
可调电容器的构成以及主要参数的介绍

从数字孪生到量子计算 EDA再次向云计算迁移

从数字孪生实体模型到量子计算,EDA再次向云计算开展迁移,由此可见2020年是集成ic开发设计的关键....
的头像 电子魔法师 发表于 01-06 09:40 ? 538次 阅读
从数字孪生到量子计算 EDA再次向云计算迁移

当变频器使用久了,它需要更换的备件有哪些

大家都知道变频器由多个部件组成,其中一些部件长期工作后性能逐渐下降老化也是变频器故障的主要原因,为了....
发表于 01-05 13:14 ? 88次 阅读
当变频器使用久了,它需要更换的备件有哪些

AD8011反相放大器的数据手册和参考设计免费下载

指定的高速性能的AD8011需要仔细注意电路板布局和组件选择。表一显示了AD8011的推荐组件值,图....
发表于 01-05 11:22 ? 33次 阅读
AD8011反相放大器的数据手册和参考设计免费下载

如何为隔离式Buck DC-DC转换器选择变压器?

本文将讨论隔离式BUCK DC-DC转换器的工作原理,选择变压器时应重点关注哪些参数,这些参数如何影....
发表于 01-04 10:06 ? 338次 阅读
如何为隔离式Buck DC-DC转换器选择变压器?

重磅:全球知名汇顶科技与航顺芯片强强联合

“汇顶科技入股国内优秀32位MCU设计供应商航顺芯片”并签署一项战略合作协议。这也是继12月初中国科....
发表于 01-04 09:55 ? 1298次 阅读
重磅:全球知名汇顶科技与航顺芯片强强联合

PW5410A稳压电荷泵DCDC转换器芯片的数据手册免费下载

PW5410A是一种低噪声、恒定频率(1。2MHZ)开关电容倍压器。它从2产生一个稳定的输出电压。7....
发表于 01-04 08:00 ? 39次 阅读
PW5410A稳压电荷泵DCDC转换器芯片的数据手册免费下载

传感器接口电路的防干扰措施及解决方案

除了直流和低频地线问题以外,还有快速变化的交流电压的耦合以及高电平电路对低电子电路通过公共的电源和连....
的头像 电子设计 发表于 12-31 10:20 ? 431次 阅读
传感器接口电路的防干扰措施及解决方案

电源管理设计多相位电源方案优势分析

电源与传导损耗有关的热性能与电流平方成正比。使用多相位方法可减少这些损耗。例如使用双相位,与传导损耗....
的头像 西西 发表于 12-30 16:26 ? 1042次 阅读
电源管理设计多相位电源方案优势分析

中芯国际对被列入“实体清单”正式做出了回应

这一举措当时并未被解读为“封杀”和“制裁”,但是美方丝毫没有停手的意向。12月4日,中芯国际和中海油....
的头像 半导体投资联盟 发表于 12-30 15:55 ? 809次 阅读
中芯国际对被列入“实体清单”正式做出了回应

固体柜常用电气元件(主电路设备)的常用设备有哪些

1. 固体柜常用电气元件(主电路设备)通常使用如下: 电流转换器称为CT(例如:LZZBJ9-10)....
发表于 12-30 11:10 ? 62次 阅读
固体柜常用电气元件(主电路设备)的常用设备有哪些

薄膜电容器模组的使用优点及实际使用情况分析

感应加热技术,早期应用在家用电磁炉上。后来随着高效,节能及环保的优点越来越显著,加上产品技术成熟及使....
的头像 电子设计 发表于 12-30 09:48 ? 360次 阅读
薄膜电容器模组的使用优点及实际使用情况分析

如何利用电容器来降低噪声的对策

使用电容器降低噪声  
发表于 12-30 07:43 ? 0次 阅读
如何利用电容器来降低噪声的对策

“第九届中国IC设计业企业家评选”活动

据了解,王艺辉在2010年创办了“珠海市杰理科技股份有限公司”,系杰理科技创始人/总经理。目前担任珠....
的头像 中国半导体论坛 发表于 12-29 16:50 ? 327次 阅读
“第九届中国IC设计业企业家评选”活动

8英寸晶圆代工采取这种方式实数罕见,更突显IC设计业抢产能火爆的盛况

IC设计厂商透露,针对明年晶圆代工产能分配,某老牌晶圆代工厂的做法是,根据今年的下单量先打九折,例如....
的头像 中国半导体论坛 发表于 12-29 16:44 ? 454次 阅读
8英寸晶圆代工采取这种方式实数罕见,更突显IC设计业抢产能火爆的盛况

AT6832漏电流测试仪的性能特征及应用

AT6832是专为电容分选机设计的漏电流检测仪器,它采用高性能微处理器控制。具有预充电电源和独立的测....
发表于 12-29 09:33 ? 82次 阅读
AT6832漏电流测试仪的性能特征及应用

降压型DCDC电路中如何进行电感和电容的选型

降压型DC-DC电路中,电感和电容是如何选型、如何计算的
发表于 12-29 08:00 ? 101次 阅读
降压型DCDC电路中如何进行电感和电容的选型

大陆企业在台企窃取半导体技术?无稽之谈!

11月底,中国台湾地区伟诠电子董事长林锡铭接受《自由时报》专访,特别提到台湾科技园区潜伏很多陆资IC....
的头像 如意 发表于 12-28 09:33 ? 353次 阅读
大陆企业在台企窃取半导体技术?无稽之谈!

4V至60V DC/DC控制器LT3844的性能特点及适用范围

Linear推出的输入范围为4V至60V的DC/DC控制器LT3844,该器件具有100kHz至50....
发表于 12-26 08:09 ? 139次 阅读
4V至60V DC/DC控制器LT3844的性能特点及适用范围

如何确定音频耦合电容容值的大???

  对于硬件工程师来说,或多或少都会接触到音频电路,其中的耦合电容是少不了的了。   提到这个耦合电容,大家都能知道其作...
发表于 12-25 16:26 ? 606次 阅读
如何确定音频耦合电容容值的大???

双通道降压型DC/DC转换器LT3506的性能特点及功能实现

LT3506/6A具有两个2A电源开关,采用16引线5mm x 4mm DFN封装,而宽输入电压范围....
发表于 12-25 09:43 ? 132次 阅读
双通道降压型DC/DC转换器LT3506的性能特点及功能实现

2.4V和2V转3.3V电源芯片PW5100的数据手册和电路图说明

PW5100 可以实现 2.4V 转 3.3V,2V 转 3.3V 的稳压电源电路,输出电流 500....
发表于 12-24 08:00 ? 72次 阅读
2.4V和2V转3.3V电源芯片PW5100的数据手册和电路图说明

1.5V转3.3V的电源芯片和方案与电路图详细说明

1.5V 转 3.3V 的电路图需要材料:PW5100 芯片,2 个贴片电容,1 个贴片电感。即可组....
发表于 12-24 08:00 ? 87次 阅读
1.5V转3.3V的电源芯片和方案与电路图详细说明

使用PW5100芯片实现1.2V转3.3V的方案和电路图说明

镍氢可充电电池 1.2V 转成 3.3V 的电路和电子产品很多,在实际适用中,即使是两节镍氢电池串联....
发表于 12-24 08:00 ? 40次 阅读
使用PW5100芯片实现1.2V转3.3V的方案和电路图说明

2V升压到3V的芯片和方案介绍

PW5328B 是一个恒定频率, 6 引脚 SOT23 电流模式升压转换器,用于小型低功耗应用。 P....
发表于 12-24 08:00 ? 56次 阅读
2V升压到3V的芯片和方案介绍

1V升压到3V和3.3V的芯片方案介绍

一般来说,1V 的电压实在很低了,即使是干电池的话,再 1V 时,也是基本属于没电状态了?;褂幸恢质?...
发表于 12-24 08:00 ? 85次 阅读
1V升压到3V和3.3V的芯片方案介绍

经典:英特尔前高管的“IC职业发展规划”分享

  大家好,我是IC修真院的李翼,木子李,如虎添翼的翼。   今天我想跟大家聊一聊ic设计十年之后或五年之后有哪些不同,这...
发表于 12-22 12:13 ? 641次 阅读
经典:英特尔前高管的“IC职业发展规划”分享

同步DC/DC降压型控制器LT3845的功能特点及适用范围

Linear推出的输入范围为4V至60V的同步DC/DC降压型控制器LT3845,该器件具有100k....
发表于 12-22 10:30 ? 122次 阅读
同步DC/DC降压型控制器LT3845的功能特点及适用范围

2.8MHz降压型DC/DC转换器LT3684的性能特点及应用范围

Linear推出的 2A、34V 降压型开关稳压器 LT3684,该器件采用 3mm x 3mm D....
发表于 12-22 10:20 ? 102次 阅读
2.8MHz降压型DC/DC转换器LT3684的性能特点及应用范围

降压型DC/DC转换器LT3480的性能特点及适用范围

LT3480具有高达60V的输入瞬态?;?,其突发模式工作可在无负载备用状态下保持低于 70uA 的静....
发表于 12-22 08:22 ? 85次 阅读
降压型DC/DC转换器LT3480的性能特点及适用范围

电容器生产线质量检查抽检统计的程序源代码免费下载

本文档的主要内容详细介绍的是应用在电容器生产线质量检查抽检统计用的程序源代码免费下载。
发表于 12-22 08:00 ? 35次 阅读
电容器生产线质量检查抽检统计的程序源代码免费下载

想从事IC设计这一行,真的是个好选择吗?

写给那些要进入IC设计行业的兄弟姐妹们: 最近这段时间一哥遇到过很多这样的问题? 总结下无非就三点, 1、想进入ic设计行业...
发表于 12-21 17:35 ? 488次 阅读
想从事IC设计这一行,真的是个好选择吗?

同步降压型开关稳压控制器LTC3812-5的性能特点及适用范围

凌力尔特推出的高输入电压同步降压型开关稳压控制器 LTC3812-5,该器件直接将电压从 60V 降....
发表于 12-21 09:58 ? 100次 阅读
同步降压型开关稳压控制器LTC3812-5的性能特点及适用范围

WiFi6需求增长 IC设计业者忙出货 晶圆代工产能紧张

与前几代Wi-Fi标准相比,Wi-Fi 6有着更快速的连接速度、更高效的联机效率与更安全的传输方法,....
发表于 12-21 09:40 ? 176次 阅读
WiFi6需求增长 IC设计业者忙出货 晶圆代工产能紧张

电子工程师必备元器件应用宝典强化版电子书免费下载

本文档的主要内容详细介绍的是电子工程师必备元器件应用宝典强化版电子书免费下载包括了:第6章 电容器....
发表于 12-21 08:00 ? 257次 阅读
电子工程师必备元器件应用宝典强化版电子书免费下载

超级电容器的结构和技术特性

  超级电容器又叫双电层电容器、黄金电容、法拉电容,它通过极化电解质来储能,属于双层电容的一种。它是一种电化学元件,但在...
发表于 12-17 16:42 ? 266次 阅读
超级电容器的结构和技术特性

贴片电容安装时需要注意的事项

  1、用过的电容器不能再使用,但作为周期检查可卸下来测试电性能;   2、如果电容器已充电,使用前要用一个约1kΩ的电阻放电...
发表于 12-17 15:42 ? 0次 阅读
贴片电容安装时需要注意的事项

电容器漏电的修理方法分享

  纸质电容器漏电的修理方法   纸质电容器如果因受潮漏电,收音机会产生失真、叫啸和音轻等故障。修理方法:预备铁罐一只,...
发表于 12-09 14:04 ? 101次 阅读
电容器漏电的修理方法分享

在去耦电路中,如何选择合适的耦合电容?

耦合指信号由第一级向第二级传递的过程,一般不加注明时往往是指交流耦合。 退耦是指对电源采取进一步的滤波措施,去除两级间...
发表于 12-02 09:34 ? 1923次 阅读
在去耦电路中,如何选择合适的耦合电容?

LT1138A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

和特点 ESD ?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kbaud 传输速率 (RL = 3k,CL = 2500pF) 250kbaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DISA...
发表于 02-22 13:26 ? 54次 阅读
LT1138A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

LT1381 具 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

和特点 ESD ?;さ燃冻?±10kV 低成本 使用小的电容器:0.1μF 与 CMOS 器件相似的低功率:40mW 采用单 5V 电源工作 120kBaud 传输速率 (RL = 3k,CL = 2500pF) 250kBaud 传输速率 (RL = 3k,CL = 1000pF) 坚固型双极性设计 当断电时输出呈高阻抗状态 绝对无闭锁现象 可提供窄体 SO 封装 产品详情 LT?1381 是一款双通道 RS232 驱动器 / 接收器对,其具有集成化充电泵,以依靠单 5V 电源产生 RS232 电压电平。该电路采用坚固型双极性设计,以提供同类竞争 CMOS 设计无可比拟的操作故障耐受力和 ESD ?;に?。此电路仅采用 0.1μF 外部电容器,消耗功率仅为 40mW,其传输速率可达 120kbaud,甚至在驱动重的容性负载时也不例外。芯片上的新型 ESD 结构使得 LT1381 能够安然承受多次 ±10kV ESD 冲击,从而免除了在 RS232 线路引脚上增设昂贵 TransZorbs? 的需要。驱动器输出得到了过载?;?,并可短路至地或高达 ±25V 而不受损坏。在电源关闭的情况下,驱动器和接收器输出处于高阻抗状态,从而实现了线路共享。应用 便携式计算机 电池供电型系统 电源发生器 终端 调制解调器 方框图...
发表于 02-22 13:26 ? 46次 阅读
LT1381 具 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

LT1130A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

和特点 ESD ?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kBaud 传输速率 (RL = 3k,CL = 2500pF) 250kBaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DIS...
发表于 02-22 13:26 ? 120次 阅读
LT1130A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

LT1280A 采用 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

和特点 10mA 最大电源电流 ESD ?;さ燃冻?±10kV 使用小的电容器:0.1μF 120kBaud 传输速率 (RL = 3k,CL = 2500pF) 250kBaud 传输速率 (RL = 3k,CL = 1000pF) 输出可承受 ±30V 而不受损 不亚于 CMOS 器件的低功率:40mW 采用单 5V 电源工作 坚固型双极性设计 当关闭或断电时输出呈高阻抗状态 满足所有的 RS232 规格要求 可提供带或不带?;δ艿陌姹?绝对无闭锁现象 采用 SO 封装 产品详情 LT?1280A / LT1281A 是双通道 RS232 驱动器 / 接收器对,其具有集成化充电泵,以依靠单 5V 电源产生 RS232 电压电平。这些电路采用坚固型双极性设计,以提供同类竞争 CMOS 设计无可比拟的操作故障耐受力和 ESD ?;に?。这些电路仅采用 0.1μF 外部电容器,消耗功率仅为 40mW,其传输速率可达 120kbaud,甚至在驱动重的容性负载时也不例外。芯片上的新型 ESD 结构使得 LT1280A / LT1281A 能够安然承受多次 ±10kV ESD 冲击,从而免除了在 RS232 线路引脚上增设昂贵 TransZorbs? 的需要。LT1280A / LT1281A 完全符合 EIA RS232 标准。驱动器输出得到了过载?;?,并可短路至地或高达 ±30V...
发表于 02-22 13:26 ? 106次 阅读
LT1280A 采用 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

LTC1059 高性能开关式电容器通用型滤波器

和特点 所有的滤波器参数均在整个温度范围内得到保证 宽的中心频率范围 (0.1Hz 至 40kHz) 低噪声、宽动态范围 可实现有保证的运行性能 (对于 ±2.37V 和 ±5V 电源) 低功耗 有保证的时钟至中心频率准确度:0.8% 有保证的低偏移电压 (在整个温度范围内) 非常低的中心频率和 Q 温度系数 时钟输入可兼容 T2L 或 CMOS 单独的高通 (或者陷波或全通)、带通、低通输出? 产品详情 LTC?1059 包含一个通用、高性能的有源滤波器单元式部件和一个独立的运放。滤波器单元式部件连同 2 至 5 个电阻器能够产生各种不同的二阶滤波器功能,这些功能可在其 3 个输出引脚上提供。这 3 个引脚中的 2 个始终提供低通和带通滤波功能,而第三个输出引脚则能够提供陷波或者高通或全通滤波功能。这些滤波器功能的中心频率可在 0.1Hz 至 40kHz 的范围内调谐,并且取决于一个外部时钟或一个外部时钟和电阻比。滤波器能处理高达 100kHz 的输入频率。对于增益调节或级联方法,独立的运放可用于获得额外的全通和陷波滤波功能。高于 2 阶的滤波器功能可通过级联 LTC1059 和 LTC1060 双通道通用型滤波器或 LTC1061 三通道通用型滤波器获得??梢孕纬扇魏尉涞穆瞬ㄆ髋渲?(比...
发表于 02-22 12:42 ? 47次 阅读
LTC1059 高性能开关式电容器通用型滤波器

LTC1043 双通道精准仪表开关电容器单元式部件

和特点 具 120dB CMRR 的仪表前端精确的电荷平衡开关操作采用 3V 至 18V 电源工作内部或外部时钟可在高达 5MHz 时钟速率下工作低功率具有一个时钟的两个独立部分 产品详情 LTC?1043 是一款单片式、电荷平衡、双通道开关电容器仪表单元式部件。一对开关交替地把一个外部电容器连接至一个输入电压,然后把这个充了电的电容器连接在一个输出端口的两端。内部开关具有一个 “先断后合” 动作。该器件提供了一个内部时钟,这个时钟的频率可利用一个外部电容器进行调节。另外,LTC1043 还可利用一个外部 CMOS 时钟来驱动。当使用低时钟频率时,LTC1043 可提供超精准的 DC 功能,并不需要精确的外部组件。此类功能是差分电压至单端转换、电压倒相、电压倍增以及二分压、三分压、四分压、五分压等等。LTC1043 还可用于精确的电压–频率 (V–F) 和频率–电压 (F–V) 转换电路 (无需修整),而且,它也是一款用于开关电容滤波器、振荡器和调制器的单元式部件。LTC1043 运用凌力尔特 (现隶属 ADI) 的增强型 LTCMOS? 硅栅工艺制造。应用精准仪表放大器超精准电压倒相器、倍增器和分压器V–F 和 F–V 转换器采样及保持开关电容滤波器 ...
发表于 02-22 12:32 ? 163次 阅读
LTC1043 双通道精准仪表开关电容器单元式部件

LTC6943 微功率、精准仪表双开关电容器单元式部件

和特点 Low Power, IS = 60μA(Max) Robust, Latch Up Proof Instrumentation Front End with 120dB CMRR Precise, Charge-Balanced Switching Operates from 5V to 18V Internal or External Clock Operates up to 5MHz Clock Rate Two Independent Sections with One Clock Tiny SSOP-16 Package 产品详情 The LTC?6943 is a monolithic, charge-balanced, dual switched capacitor instrumentation building block. A pair of switches alternately connects an external capacitor to an input voltage and then connects the charged capacitor across an output port. The internal switches have a break-before-make action. An internal clock is provided and its frequency can be adjusted with an external capacitor. The LTC6943 can also be driven with an external CMOS clock.The LTC6943, when used with low clock frequencies, provides ultra precision DC functions without requiring precise external components. Such functions are differential voltage to single-en...
发表于 02-22 12:32 ? 119次 阅读
LTC6943 微功率、精准仪表双开关电容器单元式部件

LT1139A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

和特点 ESD?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kbaud 传输速率 (RL = 3k,CL = 2500pF) 250kbaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DISAB...
发表于 02-22 12:24 ? 106次 阅读
LT1139A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

LT1281A 采用 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

和特点 10mA 最大电源电流 ESD ?;さ燃冻?±10kV 使用小的电容器:0.1μF 120kBaud 传输速率 (RL = 3k,CL = 2500pF) 250kBaud 传输速率 (RL = 3k,CL = 1000pF) 输出可承受 ±30V 而不受损 不亚于 CMOS 器件的低功率:40mW 采用单 5V 电源工作 坚固型双极性设计 当关闭或断电时输出呈高阻抗状态 满足所有的 RS232 规格要求 可提供带或不带?;δ艿陌姹?绝对无闭锁现象 采用 SO 封装 产品详情 LT?1280A / LT1281A 是双通道 RS232 驱动器 / 接收器对,其具有集成化充电泵,以依靠单 5V 电源产生 RS232 电压电平。这些电路采用坚固型双极性设计,以提供同类竞争 CMOS 设计无可比拟的操作故障耐受力和 ESD ?;に?。这些电路仅采用 0.1μF 外部电容器,消耗功率仅为 40mW,其传输速率可达 120kbaud,甚至在驱动重的容性负载时也不例外。芯片上的新型 ESD 结构使得 LT1280A / LT1281A 能够安然承受多次 ±10kV ESD 冲击,从而免除了在 RS232 线路引脚上增设昂贵 TransZorbs? 的需要。LT1280A / LT1281A 完全符合 EIA RS232 标准。驱动器输出得到了过载?;?,并可短路至地或高达 ±30V...
发表于 02-22 12:24 ? 171次 阅读
LT1281A 采用 0.1μF 电容器的低功率 5V RS232 双通道驱动器 / 接收器

LTC1049 具内部电容器的低功率、零漂移运算放大器

和特点 低电源电流:200μA无需外部组件最大失调电压:10μV最大失调电压漂移:0.1μV/°C单电源操作:4.75V 至 16V输入共模范围包括地电位输出摆动至地电位典型过载恢复时间:6ms采用 8 引脚 SO 封装和 PDIP 封装 产品详情 LTC?1049 是一款高性能、低功率零漂移运算放大器。其他斩波器稳定型放大器通常在外部需要的两个采样及保持电容器实现了片内集成。而且,LTC1049 还提供优越的 DC 和 AC 性能,标称电源电流仅为 200μA。LTC1049 具有 2μV 的典型失调电压、0.02μV/°C 的漂移、3μVP-P 的 0.1Hz 至 10Hz 输入噪声电压、和 160dB 的典型电压增益。转换速率为 0.8V/μs,增益带宽乘积为 0.8MHz。从饱和状态的过载恢复时间为 6ms,比采用外部电容器的斩波放大器有了显著的改善。LTC1049 采用标准的 8 引脚塑料双列直插式封装以及 8 引脚 SO 封装。LTC1049 可以作为大多数标准运放的插入式替代产品,其拥有改善的 DC 性能和实质性的节能效果。应用4mA 至 20mA 电流环路热电偶放大器电子衡器医疗仪表应变仪放大器高分辨率数据采集 方框图...
发表于 02-22 12:08 ? 174次 阅读
LTC1049 具内部电容器的低功率、零漂移运算放大器

LTC4425 具电流限制理想二极管和电压 / 电流 (V/I) 监视器的线性超级电容器充电器

和特点 50mΩ 理想二极管 (从 VIN 至 VOUT) 智能充电电流模式可限制浪涌电流 内部电池平衡器 (无外部电阻器) 可编程输出电压 (LDO 模式) 可编程 VIN 至 VOUT 电流限值 可通过 PROG 引脚连续监视 VIN 至 VOUT 电流 低静态电流:20μA VIN 电源故障、PGOOD 指示器 2.45V/2.7V 电池?;し致?(4.9V/5.4V 超级电容器最大 Top-Off 电压) 3A 峰值电流限值,热限制 纤巧型应用电路,3mm x 3mm x 0.75mm DFN 封装和 12 引脚 MSOP 封装? 产品详情 LTC?4425 是一款恒定电流/恒定电压线性充电器,专为从一个锂离子/锂聚合物电池、一个 USB 端口或一个 2.7V 至 5.5V 电流限制电源对一个两节超级电容器电池组进行充电而设计。该器件起一个理想二极管的作用,并具有一个极低的 50mΩ 接通电阻,从而使其成为高峰值功率/低平均功率应用的合适之选。LTC4425 能够以一个恒定充电电流将输出电容器充电至一个外部设置的输出电压 (在 LDO 模式中),或者运用一种智能充电电流模式将输出电容器充电至 VIN (在标准模式中) 以限制浪涌电流,直到 VIN 至 VOUT 之差少于 250mV 为止。此外,也可把 LTC4...
发表于 02-22 12:05 ? 179次 阅读
LTC4425 具电流限制理想二极管和电压 / 电流 (V/I) 监视器的线性超级电容器充电器

LTC3128 具准确输入电流限值的 3A、单片式、降压-升压型超级电容器充电器和平衡器

和特点 准确度达 ±2% 的可编程 (高达 3A) 平均输入电流限值可编程最大电容器电压限值主动电荷平衡用于实现不匹配电容器的快速充电可给单个电容器或堆叠式电容器充电VIN 范围:1.73V 至 5.5VVOUT 范围:1.8V 至 5.5V当充电时从 VOUT 吸收的静态电流 <2μA在?;J街刑峁┦涑龆辖樱?lt;1μA IQ ?;缌鞯缭戳己帽冉掀鞯缭垂收现甘酒髂腿刃阅茉銮啃?20 引脚 (4mm x 5mm x 0.75mm) QFN 封装和 24 引脚 TSSOP 封装 产品详情 LTC?3128 是一款高效率、降压-升压型 DC/DC 超级电容器充电器。其可在输入电压高于、低于或等于输出电压的情况下高效运作。LTC3128 具有准确的可编程平均输入电流限值、主动电荷平衡功能和可编程最大电容器电压。这种特性组合使得 LTC3128 非常适合于对后备电源系统中的大电容器进行安全的充电和?;?。输入电流限值和最大电容器电压均采用单个电阻器来设置。平均输入电流可在一个 0.5A 至 3A 的可编程范围内进行准确的控制,而个别的最大电容器电压则可以设定在 1.8V 至 3.0V 之间。LTC3128 的其他特点包括在突发模式 (Burst Mode?) 操作中从VOUT 吸收的静态电流<2μA、准确的电源良...
发表于 02-22 12:05 ? 107次 阅读
LTC3128 具准确输入电流限值的 3A、单片式、降压-升压型超级电容器充电器和平衡器

LTC3643 2A 双向后备电源

和特点 用于提供系统后备电源的双向同步升压型电容器充电器 / 降压型稳压器宽输入电压范围:3V 至 17V高达 40V 的电容器电压存储器用于提供高能量后备2A 的最大 CAP 充电电流集成型 N 沟道功率 MOSFET (150mΩ 上管和 75mΩ 下管)用于实现输出 / CAP 断接的集成型 N 沟道功率 MOSFET (50mΩ)充电期间的输入电流限制快速 1MHz 开关频率用于系统电压调节的 ±1% 基准准确度用于指示充电状态和输入电源故障的指示器输出扁平 24 引脚 3mm x 5mm QFN 封装 产品详情 LTC?3643 是一款双向同步升压型充电器和降压型转换器,其能够采用一个电压介于 3V 至 17V 之间的输入电源有效地给一个高达 40V 的电容器阵列充电。当输入电源降至低于可编程的电源故障门限时,升压型充电器作为一个同步降压型稳压器反向运作,以在这种电源中断 / 故障情况下从后备电容器来给系统电压轨供电。当给后备电容器充电时,可以采用一个外部低值检测电阻器来保持一个准确的电流限值 (针对来自输入电源的电流) 或执行电源通路 (PowerPath?) 功能。降压型转换器工作在一个 1MHz 的开关频率,因而允许使用小的外部组件。调节期间的低静态电流可最大限度地减少后备...
发表于 02-22 12:05 ? 62次 阅读
LTC3643 2A 双向后备电源

LTC3110 2A、双向、降压-升压型 DC/DC 稳压器和充电器 / 平衡器

和特点 VCAP 工作范围:0.1V 至 5.5VVSYS 工作范围:1.71V 至 5.25V从充电模式至后备模式的自动切换准确度为 ±2% 的可编程充电输入电流限值从 125mA 至 2A±1% 后备电压准确度自动后备电容器平衡固定的 1.2MHz 开关频率突发模式 (Burst Mode?) 操作:40μA 静态电流具集电极开路输出的内置可编程通用型比较器用于指示操作方向和充电结束的集电极开路输出耐热性能增强型 TSSOP-24 封装和 4mm x 4mm QFN-24 封装 产品详情 LTC?3110 是一款具有电容器充电器和平衡器的 2A 双向降压-升压型 DC/DC 稳压器。该器件拥有很宽的 0.1V 至 5.5V 电容器 / 电池电压和 1.8V 至 5.25V 系统后备电压范围,从而使其非常适合于众多采用超级电容器或电池的后备应用。一种专有的低噪声开关算法优化了效率,且电容器 / 电池电压可高于、低于或等于系统输出电压。LTC3110 能够根据一个外部命令自主地从充电模式转换至后备模式或开关模式。引脚可选的突发模式操作可减小待机电流和改善轻负载效率,其与 1μA 的?;缌飨嘧楹?,使得 LTC3110 成为后备应用的理想选择。这款器件的其他特点包括用于方向控制和充电结束的电压监控器,以及一个具有...
发表于 02-22 12:04 ? 143次 阅读
LTC3110 2A、双向、降压-升压型 DC/DC 稳压器和充电器 / 平衡器

LTC3355 具集成型 SCAP 充电器和后备稳压器的 20V 1A 降压型 DC/DC 系统 IC

和特点 VIN 电压范围:3V 至 20VVOUT 电压范围:2.7V 至 5V1A 电流模式降压主稳压器采用单个超级电容器向 5A 升压型后备稳压器供电升压型稳压器可在低至 0.5V 的电压条件下运作,以最大限度地利用超级电容器的储能可编程超级电容器充电电流至 1A,并具过压?;すδ艹涞缙骺芍С值ソ?CC/CV 电池充电可编程 VIN 电流限值可编程升压电流限值VIN 电源故障指示器VCAP 电源良好指示器VOUT 上电复位输出紧凑型 20 引脚 4mm x 4mm QFN 封装 产品详情 LTC?3355 是一款完整的输入电源中断凌驾 DC/DC 系统。该器件可在向 VOUT 输送负载电流的同时给一个超级电容器充电,并在 VIN 电源缺失的情况下使用来自超级电容器的能量以提供连续的 VOUT 后备电源。LTC3355 包含一个异步、恒定频率、电流模式、单片 1A 降压型开关稳压器,以采用一个高达 20V 的输入电源来提供 2.7V 至 5V 的稳定输出电压。一个 1A 可编程恒定电流 / 恒定电压 (CC/CV) 线性充电器负责从 VOUT 给超级电容器充电。当 VIN 电源降至低于 PFI 门限时,该器件的恒定频率、异步、电流模式 5A 升压型开关稳压器将从超级电容器向 VOUT ...
发表于 02-22 12:04 ? 262次 阅读
LTC3355 具集成型 SCAP 充电器和后备稳压器的 20V 1A 降压型 DC/DC 系统 IC

LTC3625 具自动电池平衡功能的 1A、高效率、两节超级电容器充电器

和特点 两个串联超级电容器的高效率升压/降压充电 自动电池平衡可防止电容器在充电期间出现过压状况 高达 500mA (单个电感器)、1A (双电感器) 的可编程充电电流 VIN = 2.7V 至 5.5V 每节超级电容器可选的 2.4V/2.65V 稳压 (LTC3625) 每节超级电容器可选的 2V/2.25V 稳压 (LTC3625-1) 低的无负载静态电流:23μA 在?;J街?IVOUT、IVIN < 1μA 扁平 12 引脚 3mm x 4mm DFN 封装 ? 产品详情 LTC?3625/LTC3625-1 是可编程超级电容器充电器,专为从一个 2.7V 至 5.5V 输入电源将两个串联超级电容器充电至一个固定输出电压 (可选择 4.8V/5.3V 或 4V/4.5V) 而设计。自动电池平衡功能可在实现充电速率最大化的同时防止任一个超级电容器遭受过压损坏。无需使用平衡电阻器。 高效率、高充电电流、低静态电流和极低的外部组件数目 (一个电感器、VIN 上的一个旁路电容器和一个编程电阻器) 使得 LTC3625/LTC3625-1 非常适合小外形的后备或高峰值功率系统。 充电电流/最大输入电流水平利用一个外部电阻器来设置。当输入电源拿掉和/或 EN 引脚为低电平时,LTC3625/LTC3625-1 将自动进入一种低电流状态,此...
发表于 02-22 12:04 ? 84次 阅读
LTC3625 具自动电池平衡功能的 1A、高效率、两节超级电容器充电器

LTC3350 大电流超级电容器后备控制器和系统监视器

和特点 可对 1 ~ 4 节串联超级电容器进行高效同步降压型恒流/恒压 (CC/CV) 充电后备模式中的升压模式可提供更高的超级电容器储能利用率14 位 ADC 用于监视系统电压 / 电流、电容值和 ESR主动过压?;し致纺诓坑性雌胶馄?── 无需平衡电阻VIN:4.5V ~ 35V,VCAP(n):每个电容器高达 5V,充电 / 后备电流:10+A可编程输入电流限制将系统负载的优先级确定为高于电容器充电电流双通道理想二极管电源通路 (PowerPath?) 控制器全 N-FET 充电器控制器和 PowerPath 控制器紧凑型 38 引脚 5mm x 7mm QFN 封装 产品详情 LTC?3350 是一款后备电源控制器,能够对一个含有 1 至 4 个超级电容器的串联堆栈进行充电和监视。LTC3350 的同步降压型控制器负责驱动 N 沟道 MOSFET,利用可编程输入电流限值实现恒流 / 恒压充电。此外,降压转换器还可作为一个升压转换器反向运行以从超级电容器组向后备电源轨输送电能。内部平衡器免除了增设外部平衡电阻的需要,而且每个电容具有一个用于提供过压?;さ姆致返鹘谄?。LTC3350 可监视系统电压、电流、电容组电容和电容组 ESR,这些信息均可通过 I2C / SMBus 读取。双通道理想二极管控...
发表于 02-22 12:04 ? 311次 阅读
LTC3350 大电流超级电容器后备控制器和系统监视器

LTC3351 可热插拔的超级电容器充电器、后备控制器和系统监视器

和特点 具电路断路器的集成化热插拔控制器可对 1 至 4 节串联超级电容器进行高效率同步降压型恒定电流 / 恒定电压 (CC/CV) 充电后备模式中的升压模式可提供更高的超级电容器储能利用率16 位 ADC 用于监视系统电压 / 电流、电容和 ESR可编程欠压和过压门限至 35VVIN:4.5V 至 35V,VCAP(n):每个电容器高达 5V,充电 / 后备电流:>10A可编程输入电流限制把系统负载的优先级确定为高于电容器充电电流全 N-FET 充电器控制器和 PowerPath 控制器紧凑型 44 引脚 4mm x 7mm QFN 封装 产品详情 LTC?3351 是一款后备电源控制器,其能够对一个含有 1~4 个超级电容器的串联堆栈进行充电和监察。LTC3351 的同步降压型控制器负责驱动 N 沟道 MOSFET,以利用可编程输入电流限值实现恒定电流 / 恒定电压充电。此外,降压转换器还可作为一个升压转换器反向运行,以从超级电容器组向后备电源轨输送电能。内部平衡器免除了增设外部平衡电阻器的需要,而且每个电容器具有一个用于提供过压?;さ姆致返鹘谄?。LTC3351 可监视系统电压、电流、电容器组电容和电容器组 ESR,这些信息均可通过 I2C / SMBus 端口读取。热插拔控制器采用...
发表于 02-22 12:03 ? 131次 阅读
LTC3351 可热插拔的超级电容器充电器、后备控制器和系统监视器

LTC4041 2.5A 超级电容器备份电源管理器

和特点 2.5A 降压超级电容器充电器和 2.5A 升压备份电源 适用于使用一个超级电容器或两个串联超级电容器的 2.5A 备份电源的 6.5A 开关 输入电流限制将负载优先于充电电流进行处理 输入断开开关可在备份期间隔离输入 自动无缝切换到备份模式 内部超级电容器平衡器(无外部电阻器) 可编程充电电流和充电电压 输入电源故障指示器 系统电源正常指示器 可选 OVP 电路可?;て骷皇?>60V 电压影响 恒频运行 热增强 24 引脚 4mm × 5mm QFN 封装 产品详情 LTC4041 是适用于 2.9V 至 5.5V 电源轨的完整超级电容器备份系统。它包含高电流降压直流/直流转换器,用于为单个超级电容器或两个串联超级电容器充电。当输入电源不可用时,降压稳压器将作为升压稳压器反向运行,从超级电容器备份系统输出。LTC4041 的可调输入电流限制功能可降低充电电流,从而?;な淙氲缭疵馐芄赜跋?,同时,外部断开开关会在备份期间隔离输入电源。当输入电源降至可调 PFI 阈值以下时,2.5A 升压稳压器会从超级电容器向系统输出供电??裳〉氖淙牍贡;?(OVP) 电路可?;?LTC4041,避免在 VIN 引脚处发生高电压损坏。内部超级电容器平衡电路可在每个超级电容器...
发表于 02-22 12:03 ? 161次 阅读
LTC4041 2.5A 超级电容器备份电源管理器

LT1141A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器

和特点 ESD ?;さ燃冻?±10kV(对于 LT1133A、LT1137A 和 LT1141A 为 ±15kV IEC-1000-4-2) 使用小的电容器:0.1μF、0.2μF 在?;?(SHUTDOWN) 模式中电源电流为 1μA 120kbaud 传输速率 (RL = 3k,CL = 2500pF) 250kbaud 传输速率 (RL = 3k,CL = 1000pF) 与 CMOS 器件相似的低功率 简易的 PC 布局:直通式架构 坚固型双极性设计:绝对无闭锁现象 当关闭或断电时输出呈高阻抗状态 改进的?;つ芰Γ篟S232 I/O 线路可被强制至 ±30V 而不致受损 输出过压不会强迫电流返回到电源中 可提供 SO 封装和 SSOP 封装 产品详情 LT?1130A / LT1140A 系列 RS232 收发器采用了特殊的双极型结构技术,可在故障情况超过针对 RS232 所规定的限值时?;で骱徒邮掌髅馐芩鸹?。驱动器输出和接收器输入可短接至 ±30V,并不会损坏器件或电源发生器。此外,RS232 I/O 引脚能安然承受多次 ±10kV ESD 冲击。一个先进的驱动器输出级在驱动重的容性负载时传输速率高达 250kbaud。电源电流通常为 12mA,这与 CMOS 器件不相上下。隶属该系列的一些器件具有灵活的操作模式控制功能。DRIVER DISA...
发表于 02-22 12:02 ? 109次 阅读
LT1141A 采用小电容器的先进低功率 5V RS232 驱动器 / 接收器
爱游戏体育的网址